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Symmetries of Homogeneous Structures

Homogeneous structures

Definition

A structure S is (ultra)homogeneous if every isomorphism between finite
substructures extends to an automorphism of the entire structure.

Example

Fräıssé classes Fräıssé limits
Finite linear orders → Rationals Q
Finite graphs → Rado graph R
Finite graphs omitting Kn → Kn-free graph
Finite metric spaces with rational dist. → Rational Urysohn space U
And many more....
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Symmetries of Homogeneous Structures

Symmetries of Homogeneous Structures

Definition

Let S = (E , ..) be an homogeneous structure and consider

Aut(S) = automorphisms of S
By “Symmetries”, we mean the overgroups G of Aut(S):

Aut(S) ≤ G ≤ Sym(S)
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Rationals Reducts

Reducts of the Rationals Q = (Q, <)

P. Cameron (76)

The closed subgroups of Sym(Q)
containing Aut(Q) (the reducts) are:

Aut(Q)

Betw(Q), the group of
automorphisms and
anti-automorphisms.

Cycl(Q), the group of cycling
automorphisms.

Sep(Q) generated by the previous
two groups.

Sym(Q)

Sym(Q)

Sep(Q)

Betw(Q)

Aut(Q)

Cycl(Q)
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Rationals Copies

Preserving Copies

Exercise
If f : Q→ Q ∈ Sym(Q) preserves copies, then what can f be?

Definition
Let f : Q→ Q ∈ Sym(Q), and define

x is of type OP if (∀y)[x < y =⇒ f (x) < f (y)] ∧ [y < x =⇒ f (y) < f (x)].

x is of type ROP if (∀y)[x < y =⇒ f (y) < f (x)] ∧ [y < x =⇒ f (y) > f (x)].

Proposition

If f : Q→ Q ∈ Sym(Q) preserves copies, then:

(∀x) [x is OP or x is ROP]

Corollary

If f : Q→ Q ∈ Sym(Q) preserves copies, then:

(∀x) [x is OP] or (∀x)[x is ROP]

Thus f is order preserving or reverse order preserving.
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Rationals Copies

Preserving Copies

Proof.

Case 1: Ux ∩ f −1(Uf (x)) is scattered.

Claim: Ux ∩ f −1(Uf (x)) is empty!
Else if there is such an x ′, consider two copies:

C0 ⊆ Ux ∩ f −1(Lf (x) ∩ (x , x ′)

C1 ⊆ Ux ∩ f −1(Lf (x) ∩ [x ′,∞)

Then C0 ∪ {x ′} ∪ C1 is a copy, but the image by
f has a largest element, a contradiction.
Similarly Lx ∩ f −1(Lf (x)) is empty, and thus x is
ROP.
Case 2: Ux ∩ f −1(Uf (x)) is NOT scattered.
In this case one shows x is OP.

x

f (x)

Q Q

Ux
Uf (x)

Lx

Lf (x)
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Hypergraph of Copies

Hypergraph of copies

Definition

Given a structure S, let

ΓS denote the hypergraph of induced copies of S.

Aut(ΓS) its automorphism group.

Then Aut(S) ≤ Aut(ΓS) ≤ Sym(S), so Aut(ΓS) is a symmetry.

Question

What is Aut(ΓS)?

Remark

Aut(ΓQ) = Betw(Q).
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Kn-free graph

Kn-free graph Hn = (V ,E )

Theorem (Thomas (91))

There is no closed groups between Aut(Hn) and Sym(Hn)

Theorem

Aut(ΓHn) = Aut(Hn)

Winter School 2015 Symmetries 8 / 27



Kn-free graph

Kn-free graph Hn = (V ,E )

Theorem (Thomas (91))

There is no closed groups between Aut(Hn) and Sym(Hn)

Theorem

Aut(ΓHn) = Aut(Hn)

Winter School 2015 Symmetries 8 / 27



Kn-free graph

Proof of Aut(ΓHn) = Aut(Hn).

(Triangle-Free H3 = (V ,E )) Let f : H3 → H3 preserve copies (and
conversely), and suppose wlog some edge (a, b) is mapped to a non edge.

• Define a new graph H′3 = (V ,E ′) by:

(x , y) ∈ E ′ ↔ (f (x), f (y)) ∈ E

So X ⊆ V is a copy in H3 iff it is a copy in H′3.
• Now in H′3: (1) A ∪ B ∪ R ∪ {a, b} is NOT a copy.

(2) A ∪ B ∪ R ∪ {a} IS a copy.
(3) A ∪ B ∪ R ∪ {b} IS a copy.

• So the same is true in H3. But in H3, 2&3 =⇒ 1, a contradiction.
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Rado Graph

Rado Graph

Folklore

The Rado graph R is the (unique) countable graph with the property that:

For all finite disjoint U,V ⊆ R, there is a vertex x connected to all
vertices of U and none of V .

x

U

V

R

Definition

Let WR(U,V ) be the collection of all these witness x
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Rado Graph Basic Properties

Basic Properties

WR(U,V ) is a copy of R.
Proof: WR(U ∪ U,V ∪ V ) = WR(U,V ) ∩WR(U,V ).

x

U

V

R

U

V

WR(U, V )

R is universal: it embeds all finite (and countable) graphs.

R is unique (up to isomorphism).

R exists: Fräıssé limit of all finite graphs.
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Rado Graph Basic Properties

Folklore

R is (strongly) indivisible:
If R = A ∪ B, then one of A or B IS the Rado graph.

Proof.

If A is not Rado with bad pair U,V , then WR(U,V ) ⊆ B. But
WR(U ∪ U,V ∪ V ) = WR(U,V ) ∩WR(U,V ).

x

U

V

R

U

V

WR(U, V )

A

B
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Rado Graph Automorphism group Aut(R)

Automorphism Group Aut(R)

R is homogeneous:
Any finite partial automorphism α : X → Y extends to a full
automorphism α.

Y

X

R

α

α

Aut(R) is 1-transitive, not 2-transitive.
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Rado Graph Reducts

Anti-Automorphisms

Call D(R) the group of automorphisms and anti-automorphisms.

Switching

For X ⊂ R, consider the new graph S(X ) on the same vertex set as R,
but adjacencies between X and X c are switched.
S(R) consists of all switching automorphisms, that is graph isomorphism
α : R → S(X ) for some X .

Big Group

Call B(R), the big group, generated by D(R) and S(R).
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Rado Graph Reducts

S. Thomas (91)

The closed subgroups of Sym(R)
containing Aut(R) (the reducts) are:

Aut(R)

D(R), the group of automorphisms
and anti-automorphisms.

S(R), the group of switching
automorphisms.

B(R), the group of switching
automorphisms and
anti-automorphisms.

Sym(R)

Sym(R)

B(R)

D(R)

Aut(R)

S(R)
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Rado Graph Reducts

Observation

Aut(R) is 1-transitive, not
2-transitive.

S(R) is 2-transitive, not
3-transitive.

D(R) is 2-transitive, not
3-transitive.

B(R) is 3-transitive, not
4-transitive.

Sym(R) is highly transitive.

Sym(R)

B(R)

D(R)

Aut(R)

S(R)

Cameron

Any overgroup of Aut(R) not contained in B(R) is highly transitive.
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Rado Graph Hypergraph of Copies

Question

What about Aut(ΓR)?

Definition

For S = (E , ..) a relational structures, then X ⊆ E is called scattered (or
thin if it is does not contain a copy of S.

Theorem

Any bijection f : X → X ′ between two scattered sets X and X ′ extends to
an automorphism of ΓR.

Corollary

Aut(ΓR) is highly transitive, and thus cannot be any of the reducts.
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Rado Graph Hypergraph of Copies

Proof.

Let f : X → X ′ be a bijection between scattered sets.
Write V =

⋃
n Vn, and list V \ X =< xn : n ∈ ω >.

Extend f to f̂ =
⋃

n fn such that for each n:

1 dom(fn) = Cn ⊇ Vn

2 There is k(n) so that for all k ≥ k(n) the type of xk over Vn is the
same as f̂ (xk) over f̂ (Vn).

f

f̂

Vn

xn
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Rado Graph Hypergraph of Copies

Proof.

(Cont’d) To show that it works, let R1 be a copy of R.
We show that f̂ (R1) is also a copy.

We need to realize every type in f̂ (R1).

f

f̂

xn

R1

f̂ (R1)
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Rado Graph Hypergraph of Copies

Finite Variations

Definition

Aut(ΓR) =

{σ ∈ Sym(R) : ∀E ∈ ΓR Eσ and Eσ−1 ∈ ΓR}

FAut(ΓR) =

{σ ∈ Sym(R) : ∃F finite ∀E ∈ ΓR (E \ F )σ and (E \ F )σ−1 ∈ ΓR}

Aut∗(ΓR) =

{σ ∈ Sym(R) : ∀E ∈ ΓR ∃F finite (E \ F )σ and (E \ F )σ−1 ∈ ΓR}

Proposition

S(R) 6≤ FAut(ΓR), but S(R) ≤ Aut∗(ΓR)
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Rado Graph Hypergraph of Copies

S(R) 6≤ FAut(ΓR)

a0

b0

c0

a1 a2

b1 b2

c1 c2

1 ∀n ∀k ≤ n an 6∼ bk and cn ∼ bk
2 ∀n En := {ak : k ≥ n} ∪ {bn} ∪ {ck : k ≥ n} is an edge of ΓR.
3 S(C ) is the Rado graph.

In S(C ), bn is isolated in En.

For any finite set F , choose n large enough so that En = En \ F .

Then En is a copy in R, but En is not a copy in S(C ).
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Rado Graph Aut∗(H)

S(R) ≤ Aut∗(ΓR)
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Rado Graph Aut∗(H)

Hypergraph of copies

B(R) < Aut∗(ΓR)

Proof

The orbit of K4 under the action of B(R) is

But the orbit under Aut∗(ΓR) contains all graphs on 4 elements.
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Rado Graph Overgroups

Some Overgroups of Aut(R)

Aut(R)

S(R)D(R)

Aut(R)Aut(ΓR)

Sym(R)

Aut(ΓR).FAut(R)

Aut∗(ΓR)
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Rado Graph Overgroups

Even more overgroups

Cameron and Tarzi have studied the following overgroups of R:

a) Aut1(R), the group of permutations which change only a finite number
of adjacencies;

b) Aut2(R), the group of permutations which change only a finite number
of adjacencies at each vertex;

c) Aut3(R), the group of permutations which change only a finite number
of adjacencies at all but finitely many vertices;
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Rado Graph Overgroups
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Conclusion

Question

What about the automorphism group of the neighbouring filter
F(R)?

[ F(R) = the filter generated by the (open or closed) neighbourhoods
in R ]

What about the rational Urysohn space, random partial order, or
other homogeneous structures?
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