Symmetries of Homogeneous Structures

Claude Laflamme University of Calgary

Collaborators:

 P. Cameron and S. Tarzi, Queen Mary, University of London M. Pouzet, Université Claude-Bernard Lyon1
 N. Sauer and R.Woodrow, University of Calgary

> Winter School 2015 section Set Theory & Topology Hejnice, Czech Republic

(B)

Homogeneous structures

Definition

A structure S is (ultra)homogeneous if every isomorphism between finite substructures extends to an automorphism of the entire structure.

Example

Fraïssé classes

Finite linear orders

Finite graphs

Finite graphs omitting K_n

Finite metric spaces with rational dist. And many more....

Fraïssé limits

- \rightarrow Rationals \mathbb{Q}
- \rightarrow Rado graph \mathcal{R}
- \rightarrow K_n-free graph
- ightarrow Rational Urysohn space ${\cal U}$

(日) (周) (三) (三)

Symmetries of Homogeneous Structures

Definition

Let S = (E, ...) be an homogeneous structure and consider

Aut(S) = automorphisms of S

By "Symmetries", we mean the overgroups \mathcal{G} of Aut(\mathcal{S}):

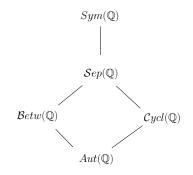
 $Aut(\mathcal{S}) \leq \mathcal{G} \leq Sym(\mathcal{S})$

Reducts of the Rationals $\mathbb{Q} = (\mathbb{Q}, <)$

P. Cameron (76)

The closed subgroups of $Sym(\mathbb{Q})$ containing $Aut(\mathbb{Q})$ (the reducts) are:

- Aut(ℚ)
- *Betw*(Q), the group of automorphisms and anti-automorphisms.
- *Cycl*(Q), the group of cycling automorphisms.
- Sep(Q) generated by the previous two groups.



● *Sym*(ℚ)

Exercise

If $f : \mathbb{Q} \to \mathbb{Q} \in Sym(\mathbb{Q})$ preserves copies, then what can f be?

3

イロト 不得下 イヨト イヨト

Exercise

If $f : \mathbb{Q} \to \mathbb{Q} \in Sym(\mathbb{Q})$ preserves copies, then what can f be?

Definition

Let $f : \mathbb{Q} \to \mathbb{Q} \in Sym(\mathbb{Q})$, and define

- x is of type OP if $(\forall y)[x < y \implies f(x) < f(y)] \land [y < x \implies f(y) < f(x)].$
- x is of type ROP if $(\forall y)[x < y \implies f(y) < f(x)] \land [y < x \implies f(y) > f(x)].$

イロト イポト イヨト イヨト

Exercise

If $f : \mathbb{Q} \to \mathbb{Q} \in Sym(\mathbb{Q})$ preserves copies, then what can f be?

Definition

Let $f : \mathbb{Q} \to \mathbb{Q} \in Sym(\mathbb{Q})$, and define

- x is of type OP if $(\forall y)[x < y \implies f(x) < f(y)] \land [y < x \implies f(y) < f(x)].$
- x is of type ROP if $(\forall y)[x < y \implies f(y) < f(x)] \land [y < x \implies f(y) > f(x)].$

Proposition

If $f : \mathbb{Q} \to \mathbb{Q} \in Sym(\mathbb{Q})$ preserves copies, then: $(\forall x) [x \text{ is } OP \text{ or } x \text{ is } ROP]$

イロト 不得下 イヨト イヨト 二日

Exercise

If $f : \mathbb{Q} \to \mathbb{Q} \in Sym(\mathbb{Q})$ preserves copies, then what can f be?

Definition

Let $f:\mathbb{Q}\rightarrow\mathbb{Q}\in \textit{Sym}(\mathbb{Q}),$ and define

- x is of type OP if $(\forall y)[x < y \implies f(x) < f(y)] \land [y < x \implies f(y) < f(x)].$
- x is of type ROP if $(\forall y)[x < y \implies f(y) < f(x)] \land [y < x \implies f(y) > f(x)].$

Proposition

If $f : \mathbb{Q} \to \mathbb{Q} \in Sym(\mathbb{Q})$ preserves copies, then: $(\forall x) [x \text{ is } OP \text{ or } x \text{ is } ROP]$

Corollary

If $f : \mathbb{Q} \to \mathbb{Q} \in Sym(\mathbb{Q})$ preserves copies, then: $(\forall x) [x \text{ is } OP] \text{ or } (\forall x)[x \text{ is } ROP]$

Thus f is order preserving or reverse order preserving.

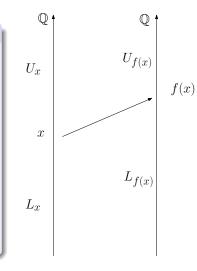
Winter	

Symmetries

Preserving Copies

Proof.

Case 1: $U_x \cap f^{-1}(U_{f(x)})$ is scattered.



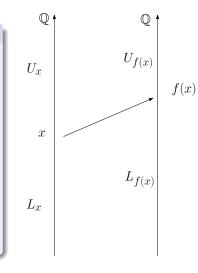
イロト イヨト イヨト イヨト

æ

Preserving Copies

Proof.

Case 1: $U_x \cap f^{-1}(U_{f(x)})$ is scattered. Claim: $U_x \cap f^{-1}(U_{f(x)})$ is empty!



- 4 週 ト - 4 三 ト - 4 三 ト

3

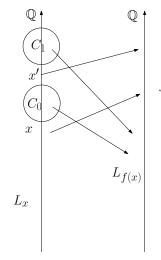
Preserving Copies

Proof.

Case 1: $U_x \cap f^{-1}(U_{f(x)})$ is scattered. **C**laim: $U_x \cap f^{-1}(U_{f(x)})$ is empty! Else if there is such an x', consider two copies:

> $C_0 \subseteq U_x \cap f^{-1}(L_{f(x)} \cap (x, x'))$ $C_1 \subseteq U_x \cap f^{-1}(L_{f(x)} \cap [x', \infty))$

Then $C_0 \cup \{x'\} \cup C_1$ is a copy, but the image by f has a largest element, a contradiction. Similarly $L_x \cap f^{-1}(L_{f(x)})$ is empty, and thus x is *ROP*.



過 ト イヨ ト イヨト

f(x)

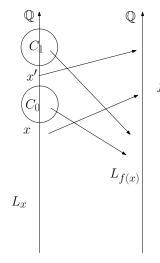
Preserving Copies

Proof.

Case 1: $U_x \cap f^{-1}(U_{f(x)})$ is scattered. **C**laim: $U_x \cap f^{-1}(U_{f(x)})$ is empty! Else if there is such an x', consider two copies:

> $C_0 \subseteq U_x \cap f^{-1}(L_{f(x)} \cap (x, x'))$ $C_1 \subseteq U_x \cap f^{-1}(L_{f(x)} \cap [x', \infty))$

Then $C_0 \cup \{x'\} \cup C_1$ is a copy, but the image by f has a largest element, a contradiction. Similarly $L_x \cap f^{-1}(L_{f(x)})$ is empty, and thus x is *ROP*. **Case 2:** $U_x \cap f^{-1}(U_{f(x)})$ is NOT scattered. In this case one shows x is *OP*



- 4 同 6 4 日 6 4 日 6

f(x)

Hypergraph of copies

Definition

Given a structure S, let

- Γ_{S} denote the hypergraph of induced copies of S.
- $Aut(\Gamma_{S})$ its automorphism group.

A B F A B F

Hypergraph of copies

Definition

Given a structure S, let

- Γ_{S} denote the hypergraph of induced copies of S.
- $Aut(\Gamma_S)$ its automorphism group.

Then $Aut(S) \leq Aut(\Gamma_S) \leq Sym(S)$, so $Aut(\Gamma_S)$ is a symmetry.

Question

What is $Aut(\Gamma_{S})$?

- 4 週 ト - 4 三 ト - 4 三 ト -

Hypergraph of copies

Definition

Given a structure S, let

- Γ_{S} denote the hypergraph of induced copies of S.
- $Aut(\Gamma_{\mathcal{S}})$ its automorphism group.

Then $Aut(S) \leq Aut(\Gamma_S) \leq Sym(S)$, so $Aut(\Gamma_S)$ is a symmetry.

Question

What is $Aut(\Gamma_{S})$?

 Remark

 $Aut(\Gamma_{\mathbb{Q}}) = \mathcal{B}etw(\mathbb{Q}).$

 Winter School 2015
 Symmetries

 7/27

 K_n -free graph $\mathcal{H}_n = (V, E)$

Theorem (Thomas (91))

There is no closed groups between $Aut(\mathcal{H}_n)$ and $Sym(\mathcal{H}_n)$

 K_n -free graph $\mathcal{H}_n = (V, E)$

Theorem (Thomas (91))

There is no closed groups between $Aut(\mathcal{H}_n)$ and $Sym(\mathcal{H}_n)$

Theorem

 $Aut(\Gamma_{\mathcal{H}_n}) = Aut(\mathcal{H}_n)$

- 4 週 ト - 4 三 ト - 4 三 ト -

(Triangle-Free $\mathcal{H}_3 = (V, E)$) Let $f : \mathcal{H}_3 \to \mathcal{H}_3$ preserve copies (and conversely), and suppose wlog some edge (a, b) is mapped to a non edge.

- A I I I A I I I I

(Triangle-Free $\mathcal{H}_3 = (V, E)$) Let $f : \mathcal{H}_3 \to \mathcal{H}_3$ preserve copies (and conversely), and suppose wlog some edge (a, b) is mapped to a non edge. • Define a new graph $\mathcal{H}'_3 = (V, E')$ by:

 $(x,y) \in E' \leftrightarrow (f(x),f(y)) \in E$

So $X \subseteq V$ is a copy in \mathcal{H}_3 iff it is a copy in \mathcal{H}'_3 .

- A I - A I

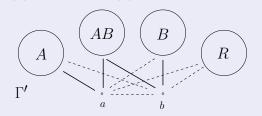
(Triangle-Free $\mathcal{H}_3 = (V, E)$) Let $f : \mathcal{H}_3 \to \mathcal{H}_3$ preserve copies (and conversely), and suppose wlog some edge (a, b) is mapped to a non edge. • Define a new graph $\mathcal{H}'_3 = (V, E')$ by:

$$(x,y)\in E'\leftrightarrow (f(x),f(y))\in E$$

So $X \subseteq V$ is a copy in \mathcal{H}_3 iff it is a copy in \mathcal{H}'_3 .

• Now in \mathcal{H}'_3 : (1) $A \cup B \cup R \cup \{a, b\}$ is NOT a copy.

(2) $A \cup B \cup R \cup \{a\}$ IS a copy. (3) $A \cup B \cup R \cup \{b\}$ IS a copy.



- 4 同 6 4 日 6 4 日 6

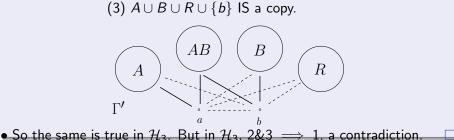
(Triangle-Free $\mathcal{H}_3 = (V, E)$) Let $f : \mathcal{H}_3 \to \mathcal{H}_3$ preserve copies (and conversely), and suppose wlog some edge (a, b) is mapped to a non edge. • Define a new graph $\mathcal{H}'_3 = (V, E')$ by:

$$(x,y)\in E'\leftrightarrow (f(x),f(y))\in E$$

So $X \subseteq V$ is a copy in \mathcal{H}_3 iff it is a copy in \mathcal{H}'_3 .

• Now in \mathcal{H}'_3 : (1) $A \cup B \cup R \cup \{a, b\}$ is NOT a copy.

(2) $A \cup B \cup R \cup \{a\}$ IS a copy. (2) $A \cup B \cup B \cup \{b\}$ IS a copy.



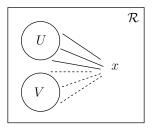
< ロト < 団ト < 団ト < 団ト

Rado Graph

Folklore

The Rado graph \mathcal{R} is the (unique) countable graph with the property that:

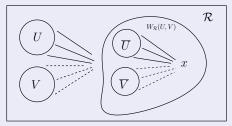
For all finite disjoint $U, V \subseteq \mathcal{R}$, there is a vertex x connected to all vertices of U and none of V.



Definition

Let $W_{\mathcal{R}}(U, V)$ be the collection of all these witness x

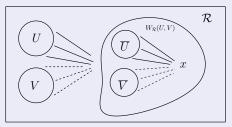
• $W_{\mathcal{R}}(U, V)$ is a copy of \mathcal{R} . Proof: $W_{\mathcal{R}}(U \cup \overline{U}, V \cup \overline{V}) = W_{\mathcal{R}}(U, V) \cap W_{\mathcal{R}}(\overline{U}, \overline{V})$.



3

- 4 同 6 4 日 6 4 日 6

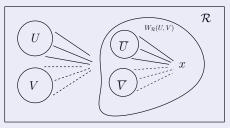
• $W_{\mathcal{R}}(U, V)$ is a copy of \mathcal{R} . Proof: $W_{\mathcal{R}}(U \cup \overline{U}, V \cup \overline{V}) = W_{\mathcal{R}}(U, V) \cap W_{\mathcal{R}}(\overline{U}, \overline{V})$.



• \mathcal{R} is universal: it embeds all finite (and countable) graphs.

< 3 > < 3 >

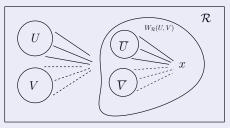
• $W_{\mathcal{R}}(U, V)$ is a copy of \mathcal{R} . Proof: $W_{\mathcal{R}}(U \cup \overline{U}, V \cup \overline{V}) = W_{\mathcal{R}}(U, V) \cap W_{\mathcal{R}}(\overline{U}, \overline{V})$.



R is universal: it embeds all finite (and countable) graphs. *R* is unique (up to isomorphism).

< 3 > < 3 >

• $W_{\mathcal{R}}(U, V)$ is a copy of \mathcal{R} . Proof: $W_{\mathcal{R}}(U \cup \overline{U}, V \cup \overline{V}) = W_{\mathcal{R}}(U, V) \cap W_{\mathcal{R}}(\overline{U}, \overline{V})$.



- \mathcal{R} is universal: it embeds all finite (and countable) graphs.
- \mathcal{R} is unique (up to isomorphism).
- *R* exists: Fraïssé limit of all finite graphs.

< 3 > < 3 >

Folklore

 \mathcal{R} is (strongly) indivisible: If $\mathcal{R} = A \cup B$, then one of A or B IS the Rado graph.

3

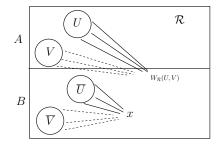
(日) (周) (三) (三)

Folklore

 \mathcal{R} is (strongly) indivisible: If $\mathcal{R} = A \cup B$, then one of A or B IS the Rado graph.

Proof.

If A is not Rado with bad pair U, V, then $W_{\mathcal{R}}(U, V) \subseteq B$. But $W_{\mathcal{R}}(U \cup \overline{U}, V \cup \overline{V}) = W_{\mathcal{R}}(U, V) \cap W_{\mathcal{R}}(\overline{U}, \overline{V}).$

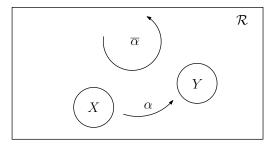


- E > - E >

Automorphism Group $Aut(\mathcal{R})$

• \mathcal{R} is homogeneous:

Any finite partial automorphism $\alpha : X \to Y$ extends to a full automorphism $\overline{\alpha}$.

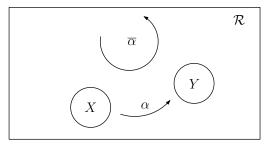


A B < A B </p>

Automorphism Group $Aut(\mathcal{R})$

• \mathcal{R} is homogeneous:

Any finite partial automorphism $\alpha : X \to Y$ extends to a full automorphism $\overline{\alpha}$.



• $Aut(\mathcal{R})$ is 1-transitive, not 2-transitive.

4 3 > 4 3 >

Anti-Automorphisms

Call $\mathcal{D}(\mathcal{R})$ the group of automorphisms and anti-automorphisms.

- 4 週 ト - 4 三 ト - 4 三 ト

Anti-Automorphisms

Call $\mathcal{D}(\mathcal{R})$ the group of automorphisms and anti-automorphisms.

Switching

For $X \subset \mathcal{R}$, consider the new graph S(X) on the same vertex set as \mathcal{R} , but adjacencies between X and X^c are switched. $S(\mathcal{R})$ consists of all switching automorphisms, that is graph isomorphism $\alpha : \mathcal{R} \to S(X)$ for some X.

過 ト イヨ ト イヨト

Anti-Automorphisms

Call $\mathcal{D}(\mathcal{R})$ the group of automorphisms and anti-automorphisms.

Switching

For $X \subset \mathcal{R}$, consider the new graph S(X) on the same vertex set as \mathcal{R} , but adjacencies between X and X^c are switched. $S(\mathcal{R})$ consists of all switching automorphisms, that is graph isomorphism $\alpha : \mathcal{R} \to S(X)$ for some X.

Big Group

Call $\mathcal{B}(\mathcal{R})$, the big group, generated by $\mathcal{D}(\mathcal{R})$ and $\mathcal{S}(\mathcal{R})$.

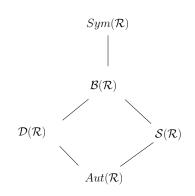
(4 回) (4 \Pi) (4 \Pi)

Reducts

S. Thomas (91)

The closed subgroups of $Sym(\mathcal{R})$ containing $Aut(\mathcal{R})$ (the reducts) are:

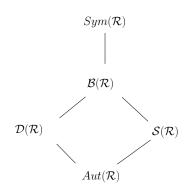
- $Aut(\mathcal{R})$
- $\mathcal{D}(\mathcal{R})$, the group of automorphisms and anti-automorphisms.
- $\mathcal{S}(\mathcal{R})$, the group of switching automorphisms.
- $\mathcal{B}(\mathcal{R})$, the group of switching automorphisms and anti-automorphisms.
- $Sym(\mathcal{R})$



Reducts

Observation

- Aut(\mathcal{R}) is 1-transitive, not 2-transitive.
- S(R) is 2-transitive, not 3-transitive.
- $\mathcal{D}(\mathcal{R})$ is 2-transitive, not 3-transitive.
- $\mathcal{B}(\mathcal{R})$ is 3-transitive, not 4-transitive.
- $Sym(\mathcal{R})$ is highly transitive.

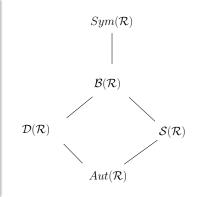


A B F A B F

Reducts

Observation

- Aut(*R*) is 1-transitive, not 2-transitive.
- S(R) is 2-transitive, not 3-transitive.
- D(R) is 2-transitive, not 3-transitive.
- $\mathcal{B}(\mathcal{R})$ is 3-transitive, not 4-transitive.
- Sym(R) is highly transitive.



Cameron

Any overgroup of $Aut(\mathcal{R})$ not contained in $\mathcal{B}(\mathcal{R})$ is highly transitive.

What about $Aut(\Gamma_{\mathcal{R}})$?

æ

イロト イヨト イヨト イヨト

What about $Aut(\Gamma_{\mathcal{R}})$?

Definition

For S = (E, ...) a relational structures, then $X \subseteq E$ is called **scattered** (or **thin** if it is does not contain a copy of S.

A B F A B F

What about $Aut(\Gamma_{\mathcal{R}})$?

Definition

For S = (E, ...) a relational structures, then $X \subseteq E$ is called **scattered** (or **thin** if it is does not contain a copy of S.

Theorem

Any bijection $f : X \to X'$ between two scattered sets X and X' extends to an automorphism of $\Gamma_{\mathcal{R}}$.

What about $Aut(\Gamma_{\mathcal{R}})$?

Definition

For S = (E, ...) a relational structures, then $X \subseteq E$ is called **scattered** (or **thin** if it is does not contain a copy of S.

Theorem

Any bijection $f : X \to X'$ between two scattered sets X and X' extends to an automorphism of $\Gamma_{\mathcal{R}}$.

Corollary

Aut($\Gamma_{\mathcal{R}}$) is highly transitive, and thus cannot be any of the reducts.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

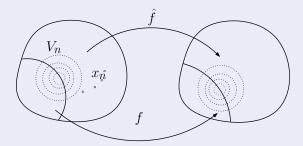
Hypergraph of Copies

Proof.

Let $f : X \to X'$ be a bijection between scattered sets. Write $V = \bigcup_n V_n$, and list $V \setminus X = \langle x_n : n \in \omega \rangle$. Extend f to $\hat{f} = \bigcup_n f_n$ such that for each n:

$$om(f_n) = C_n \supseteq V_n$$

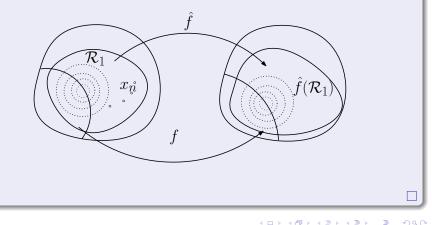
One of the end of



Proof.

(Cont'd) To show that it works, let \mathcal{R}_1 be a copy of \mathcal{R} . We show that $\hat{f}(\mathcal{R}_1)$ is also a copy.

We need to realize every type in $\hat{f}(\mathcal{R}_1)$.



Finite Variations

Definition

• $Aut(\Gamma_{\mathcal{R}}) =$

 $\{\sigma \in Sym(\mathcal{R}) : \forall E \in \Gamma_{\mathcal{R}} \ E\sigma \ and \ E\sigma^{-1} \in \Gamma_{\mathcal{R}}\}$

• $FAut(\Gamma_{\mathcal{R}}) =$

 $\{\sigma \in Sym(\mathcal{R}) : \exists F \text{ finite } \forall E \in \Gamma_{\mathcal{R}} (E \setminus F)\sigma \text{ and } (E \setminus F)\sigma^{-1} \in \Gamma_{\mathcal{R}}\}$

• $Aut^*(\Gamma_{\mathcal{R}}) =$

 $\{\sigma \in Sym(\mathcal{R}) : \forall E \in \Gamma_{\mathcal{R}} \exists F \text{ finite } (E \setminus F)\sigma \text{ and } (E \setminus F)\sigma^{-1} \in \Gamma_{\mathcal{R}}\}$

イロト イポト イヨト イヨト

Finite Variations

Definition

• $Aut(\Gamma_{\mathcal{R}}) =$

$$\{\sigma \in Sym(\mathcal{R}) : \forall E \in \Gamma_{\mathcal{R}} \ E\sigma \ and \ E\sigma^{-1} \in \Gamma_{\mathcal{R}}\}$$

• $FAut(\Gamma_{\mathcal{R}}) =$

 $\{\sigma \in Sym(\mathcal{R}) : \exists F \text{ finite } \forall E \in \Gamma_{\mathcal{R}} (E \setminus F)\sigma \text{ and } (E \setminus F)\sigma^{-1} \in \Gamma_{\mathcal{R}}\}$

Aut*(Γ_R) =

 $\{\sigma \in Sym(\mathcal{R}) : \forall E \in \Gamma_{\mathcal{R}} \exists F \text{ finite } (E \setminus F)\sigma \text{ and } (E \setminus F)\sigma^{-1} \in \Gamma_{\mathcal{R}}\}$

Proposition

 $\mathcal{S}(\mathcal{R}) \not\leq FAut(\Gamma_{\mathcal{R}}), \text{ but } \mathcal{S}(\mathcal{R}) \leq Aut^*(\Gamma_{\mathcal{R}})$

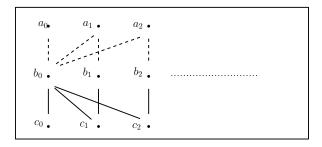
(日) (同) (三) (三)

æ

イロト イヨト イヨト イヨト

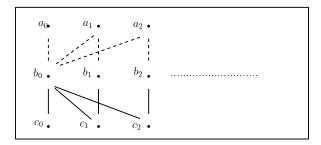
Hypergraph of Copies

$\mathcal{S}(\mathcal{R}) \not\leq \textit{FAut}(\Gamma_{\mathcal{R}})$



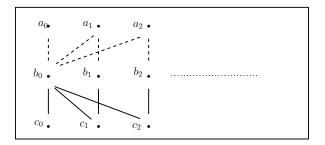
3

イロト イヨト イヨト イヨト



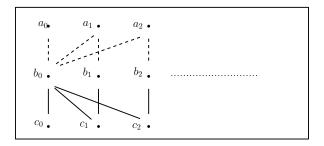
æ

<ロト < 団ト < 団ト < 団ト



3

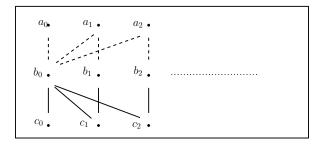
イロト 不得下 イヨト イヨト



- $\Im \ \forall n \ E_n := \{a_k : k \ge n\} \cup \{b_n\} \cup \{c_k : k \ge n\} \text{ is an edge of } \Gamma_{\mathcal{R}}.$
- 3 S(C) is the Rado graph.

3

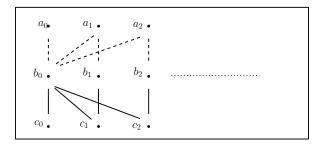
(日) (周) (三) (三)



- $\exists \forall n \ E_n := \{a_k : k \ge n\} \cup \{b_n\} \cup \{c_k : k \ge n\} \text{ is an edge of } \Gamma_{\mathcal{R}}.$
- **3** S(C) is the Rado graph.
 - In S(C), b_n is isolated in E_n .

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

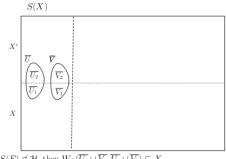


- $\Im \ \forall n \ E_n := \{a_k : k \ge n\} \cup \{b_n\} \cup \{c_k : k \ge n\} \text{ is an edge of } \Gamma_{\mathcal{R}}.$
- 3 S(C) is the Rado graph.
 - In S(C), b_n is isolated in E_n .
 - For any finite set F, choose n large enough so that $E_n = E_n \setminus F$.

Then E_n is a copy in \mathcal{R} , but E_n is not a copy in S(C).

æ

<ロ> (日) (日) (日) (日) (日)



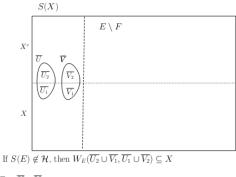
If $S(E) \notin \mathcal{H}$, then $W_E(\overline{U_2} \cup \overline{V_1}, \overline{U_1} \cup \overline{V_2}) \subseteq X$

Winter School 2015

22 / 27

æ

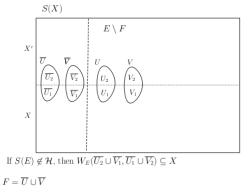
イロン イヨン イヨン イヨン



 $F=\overline{U}\cup\overline{V}$

æ

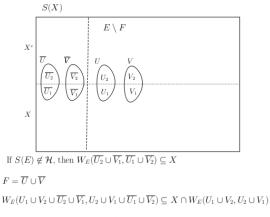
イロン イヨン イヨン イヨン



 $W_E(U_1 \cup V_2 \cup \overline{U_2} \cup \overline{V_1}, U_2 \cup V_1 \cup \overline{U_1} \cup \overline{V_2}) \subseteq X \cap W_E(U_1 \cup V_2, U_2 \cup V_1)$

æ

(日) (周) (三) (三)



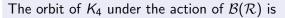
æ

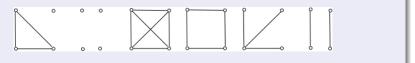
(日) (周) (三) (三)

Hypergraph of copies

 $\mathcal{B}(\mathcal{R}) < Aut^*(\Gamma_\mathcal{R})$

Proof



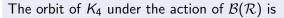


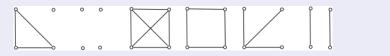
< 3 > < 3 >

Hypergraph of copies

 $\mathcal{B}(\mathcal{R}) < Aut^*(\Gamma_\mathcal{R})$

Proof

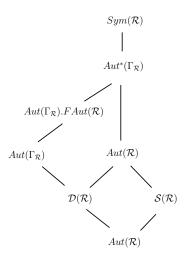




But the orbit under $Aut^*(\Gamma_{\mathcal{R}})$ contains all graphs on 4 elements.

< 3 > < 3 >

Some Overgroups of $Aut(\mathcal{R})$



æ

イロト イヨト イヨト イヨト

Cameron and Tarzi have studied the following overgroups of $\mathcal{R}:$

A B < A B </p>

Cameron and Tarzi have studied the following overgroups of $\ensuremath{\mathcal{R}}$:

a) $Aut_1(\mathcal{R})$, the group of permutations which change only a finite number of adjacencies;

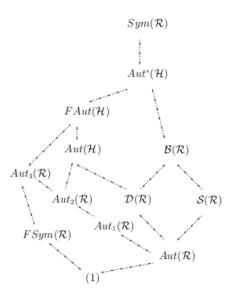
< 3 > < 3 >

Cameron and Tarzi have studied the following overgroups of \mathcal{R} :

- a) $Aut_1(\mathcal{R})$, the group of permutations which change only a finite number of adjacencies;
- b) Aut₂(R), the group of permutations which change only a finite number of adjacencies at each vertex;

Cameron and Tarzi have studied the following overgroups of \mathcal{R} :

- a) $Aut_1(\mathcal{R})$, the group of permutations which change only a finite number of adjacencies;
- b) Aut₂(R), the group of permutations which change only a finite number of adjacencies at each vertex;
- c) $Aut_3(\mathcal{R})$, the group of permutations which change only a finite number of adjacencies at all but finitely many vertices;



3

イロン イヨン イヨン イヨン

• What about the automorphism group of the neighbouring filter $\mathcal{F}(\mathcal{R})$?

[$\mathcal{F}(\mathcal{R})=$ the filter generated by the (open or closed) neighbourhoods in \mathcal{R}]

通 ト イヨト イヨト

• What about the automorphism group of the neighbouring filter $\mathcal{F}(\mathcal{R})$?

[$\mathcal{F}(\mathcal{R})=$ the filter generated by the (open or closed) neighbourhoods in \mathcal{R}]

• What about the rational Urysohn space, random partial order, or other homogeneous structures?